Interfacial electron transfer into functionalized crystalline polyoxotitanate nanoclusters.

نویسندگان

  • Robert C Snoeberger
  • Karin J Young
  • Jiji Tang
  • Laura J Allen
  • Robert H Crabtree
  • Gary W Brudvig
  • Philip Coppens
  • Victor S Batista
  • Jason B Benedict
چکیده

Interfacial electron transfer (IET) between a chromophore and a semiconductor nanoparticle is one of the key processes in a dye-sensitized solar cell. Theoretical simulations of the electron transfer in polyoxotitanate nanoclusters Ti(17)O(24)(OPr(i))(20) (Ti(17)) functionalized with four p-nitrophenyl acetylacetone (NPA-H) adsorbates, of which the atomic structure has been fully established by X-ray diffraction measurements, are presented. Complementary experimental information showing IET has been obtained by EPR spectroscopy. Evolution of the time-dependent photoexcited electron during the initial 5 fs after instantaneous excitation to the NPA LUMO + 1 has been evaluated. Evidence for delocalization of the excitation over multiple chromophores after excitation to the NPA LUMO + 2 state on a 15 fs time scale is also obtained. While chromophores are generally considered electronically isolated with respect to neighboring sensitizers, our calculations show that this is not necessarily the case. The present work is the most comprehensive study to date of a sensitized semiconductor nanoparticle in which the structure of the surface and the mode of molecular adsorption are precisely defined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoelectrochemical hole injection revealed in polyoxotitanate nanocrystals functionalized with organic adsorbates.

We find that crystallographically resolved Ti17O24(OPr(i))20 nanoparticles, functionalized by covalent attachment of 4-nitrophenyl-acetylacetonate or coumarin 343 adsorbates, exhibit hole injection into surface states when photoexcited with visible light (λ = 400-680 nm). Our findings are supported by photoelectrochemical measurements, EPR spectroscopy, and quantum dynamics simulations of inter...

متن کامل

A manganese-doped polymeric framework of polyoxotitanate nanoclusters with a narrow band gap.

A three-dimensional coordination polymer based on a manganese-doped polyoxotitanate nanocluster, {Ti13Mn4O16[MeC(CH2O)3]4(OEt)12Br4}∞, has been synthesized under solvothermal conditions. It is the first framework of doped polyoxotitanate nanoclusters reported in the literature. Compared with anatase, its band gap is reduced from 3.19 to 2.57 eV.

متن کامل

Functionalized Graphene–Polyoxometalate Nanodots Assembly as “Organic–Inorganic” Hybrid Supercapacitors and Insights into Electrode/Electrolyte Interfacial Processes

The stable high-performance electrochemical electrodes consisting of supercapacitive reduced graphene oxide (rGO) nanosheets decorated with pseudocapacitive polyoxometalates (phosphomolybdate acid-H3PMo12O40 (POM) and phosphotungstic acid-H3PW12O40 (POW)) nanodots/nanoclusters are hydrothermally synthesized. The interactions between rGO and POM (and POW) components create emergent “organic–inor...

متن کامل

Cyclic control of the surface properties of a monolayer-functionalized electrode by the electrochemical generation of Hg nanoclusters.

Hg(2+) ions are bound to a 1,4-benzenedimethanethiol (BDMT) monolayer assembled on a Au electrode. Electrochemical reduction of the Hg(2+)-BDMT monolayer to Hg(+)-BDMT (at E degrees =0.48 V) and subsequently to Hg(0)-BDMT (at E degrees =0.2 V) proceeds with electron-transfer rate constants of 8 and 11 s(-1), respectively. The Hg(0) atoms cluster into aggregates that exhibit dimensions of 30 nm ...

متن کامل

Mass spectrometric monitoring of interfacial photoelectron transfer and imaging of active crystalline facets of semiconductors

Monitoring of interfacial electron transfer (ET) in situ is important to understand the ET mechanism and designing efficient photocatalysts. We describe herein a mass spectrometric approach to investigate the ultrafast transfer of photoelectrons that are generated by ultraviolet irradiation on surfaces of semiconductor nanoparticles or crystalline facets. The mass spectrometric approach can not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 21  شماره 

صفحات  -

تاریخ انتشار 2012